Homework \#7 Math 518

Due in class Wednesday, October 12, 2011

1. Let M be a manifold. An isotopy on M is a collection of diffeomorphisms $\left\{f_{t}: M \rightarrow M\right\}_{t \in(-\epsilon, \epsilon)}$ such that
2. f_{0} is the identity, and
3. the map $(-\epsilon, \epsilon) \times M \rightarrow M$ given by $(t, m) \mapsto f_{t}(m)$ is smooth.

A time-dependent vector field $\left\{X_{t}\right\}$ is a smooth map $(-\epsilon, \epsilon) \times M \rightarrow T M$ of the form $(t, m) \mapsto$ $X_{t}(m) \in T_{m} M$. An isotopy $\left\{f_{t}\right\}$ defines a time-dependent vector field $\left\{X_{t}\right\}$ by

$$
X_{s}\left(f_{s}(m)\right)=\left.\frac{d}{d t}\right|_{t=s} f_{t}(m) .
$$

Prove that given a time-dependent vector field $\left\{X_{t}\right\}$, there is an isotopy $\left\{f_{t}\right\}$ such that the equation above holds.
Hint: Let $\bar{X}(t, m)=\left(\frac{d}{d t}, X_{t}(m)\right)$; it is a vector field on $\mathbb{R} \times M$. The local flow $\Phi_{s}(t, m)$ of \bar{X} is of the form $\Phi_{s}(t, m)=\left(\Phi_{s}^{1}(t, m), \Phi_{s}^{2}(t, m)\right)$. Show that $\Phi_{s}^{1}(t, m)=s+t$.
2. Consider a time-dependent vector field $X_{t}(m)=t \frac{d}{d \theta}$ on S^{1}. Compute the corresponding isotopy.
3. Suppose that M and N are manifolds. If $X \in \Gamma(T M)$ is a vector field, show that $\bar{X}: M \times N \rightarrow$ $T(M \times N) \simeq T M \times T N$ given by $\bar{X}(m, n)=(X(m), 0)$ is a well-defined vector field on $M \times N$. Similarly, given $Y \in \Gamma(T N)$ we get $\bar{Y} \in \Gamma(T(M \times N))$. Show that $[\bar{X}, \bar{Y}]=0$.
4. Show that if $\left\{v_{i}\right\}$ is a basis of a vector space $V,\left\{v_{i}^{*}\right\}$ the dual basis of V^{*} and $\left\{w_{j}\right\}$ a basis of a vector space W, then $\left\{v_{i}^{*}(\cdot) w_{j}\right\}$ is a basis of the vector space $\operatorname{Hom}(V, W)$ of linear maps from V to W.

