Homework #7 Math 518

Due in class Wednesday, October 12, 2011

1. Let *M* be a manifold. An **isotopy** on *M* is a collection of diffeomorphisms $\{f_t : M \to M\}_{t \in (-\epsilon,\epsilon)}$ such that

- 1. f_0 is the identity, and
- 2. the map $(-\epsilon, \epsilon) \times M \to M$ given by $(t, m) \mapsto f_t(m)$ is smooth.

A time-dependent vector field $\{X_t\}$ is a smooth map $(-\epsilon, \epsilon) \times M \to TM$ of the form $(t, m) \mapsto X_t(m) \in T_m M$. An isotopy $\{f_t\}$ defines a time-dependent vector field $\{X_t\}$ by

$$X_s(f_s(m)) = \frac{d}{dt}\Big|_{t=s} f_t(m).$$

Prove that given a time-dependent vector field $\{X_t\}$, there is an isotopy $\{f_t\}$ such that the equation above holds.

Hint: Let $\overline{X}(t,m) = (\frac{d}{dt}, X_t(m))$; it is a vector field on $\mathbb{R} \times M$. The local flow $\Phi_s(t,m)$ of \overline{X} is of the form $\Phi_s(t,m) = (\Phi_s^1(t,m), \Phi_s^2(t,m))$. Show that $\Phi_s^1(t,m) = s + t$.

2. Consider a time-dependent vector field $X_t(m) = t \frac{d}{d\theta}$ on S^1 . Compute the corresponding isotopy.

3. Suppose that M and N are manifolds. If $X \in \Gamma(TM)$ is a vector field, show that $\overline{X} : M \times N \to T(M \times N) \simeq TM \times TN$ given by $\overline{X}(m,n) = (X(m),0)$ is a well-defined vector field on $M \times N$. Similarly, given $Y \in \Gamma(TN)$ we get $\overline{Y} \in \Gamma(T(M \times N))$. Show that $[\overline{X}, \overline{Y}] = 0$.

4. Show that if $\{v_i\}$ is a basis of a vector space V, $\{v_i^*\}$ the dual basis of V^* and $\{w_j\}$ a basis of a vector space W, then $\{v_i^*(\cdot)w_j\}$ is a basis of the vector space Hom(V, W) of linear maps from V to W.